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Abstract In this work a new modified embedded 5(4) pair of explicit Runge—Kutta
methods is developed for the numerical solution of the Schrodinger equation. We
investigate the error of the new pair, based on the error analysis we apply the higher
order method to the resonance problem, also we apply the new embedded pair to
elastic scattering phase-shift problem. The applications show the efficiency of our
new developed embedded pair and the higher order method.
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1 Introduction

The radial time independent Schrodinger equation has the form

I(1+1
Y = ( ( :; ) + V() = E)y(r). ey

This type of problems appears often in many scientific areas such as astronomy, nuclear
physics, quantum chemistry, molecular physics, celestial mechanics and so on.

For the above problem (1), we take the following notations: The quantity / is a given
integer representing the angular momentum, the term /( + 1) /2 is called the centrifu-
gal potential. V (r) is a given function which denotes the potential with V(r) — 0
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if r — oo. The function W(r) =1(l + 1)/ r2 + V(r) is called the effective potential.
This satisfies W(r) — 0 as x — oo. The quantity E is a real number denoting the
energy.

In the past decade, many categories of numerical methods have been constructed
for the approximate solution of the radial Schrodinger equation (1) or for general ordi-
nary differential equations with oscillatory solutions ([1-50]), Most of these meth-
ods are: (a) Exponentially/trigonometrically fitted Runge—Kutta (RK) [1-4], Runge—
Kutta Nystrom (RKN), multistep methods and Exponential fitting BDF algorithms
[46,47]; (b) Phase-fitted/amplification fitted RK, RKN, multistep methods; (c) Mini-
mal phase lag RK, RKN, multistep methods; (d) Symplectic or symmetric methods for
Hamiltonian systems.

For exponentially fitted multistep methods, there is an excellent review [39] by Vigo-
Aguiar and Simos on multistep methods for the numerical solution of the Schrodinger
equation, they present a simple procedure for the production of adapted Cowell meth-
ods of any algebraic, trigonometric and exponential order. It has been universally
acknowledged that when applied to the Schrodinger equation general-purpose meth-
ods cannot produce satisfactory numerical results. Compared with multistep methods
whose implements requires a series of starting values, Runge—Kutta type methods are
favorable because the initial values that are available in advance are sufficient for them
to run. In this paper we focus on modified RK methods and variable stepsize RK pair.
For variable stepsize multistep methods one can refer to [45].

The Procedure of Kalogiratou and Simos [50] for the numerical ingegration of the
Schrodinger equation is based on trigonometric fitting, the developed methods can
integrate exactly the test equation y” = —w?y and the numerical results show the
robustness of the new methods.

Here we develop a new trigonometrically fitted embedded 5(4) pair of explicit
Runge—Kutta methods following the procedure of Kalogiratou and Simos [50], the
new methods integrate exactly the test equation y’ = iwy. In Sect. 2 we give the
necessary conditions for such methods. In Sects. 3 we construct the new 5(4) pair of
explicit Runge—Kutta methods and give an error analysis of the higher order method
of the new pair and some related methods. In Sect. 4 we apply the higher order method
to the resonance problem, also we apply the new embedded pair to elastic scattering
phase-shift problem.

2 Preliminaries

2.1 Embedded Runge—Kutta methods

A Runge—Kutta (RK) method is defined by

i—1
Yizyn—i—hZaijf(xn—I—cjh,Yj), i=1,2,...,s,
Jj=1 (2)

N
Yl = Yn +h D bi f(xp +cih, Y),
i=1
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with the following associated Butcher tableau:

0
c2|azi
Cy|ds] - g s—1
|b1 . by
or in matrix form
clA
b
. . T
where A is matrix (¢;,j)sxs, ¢ = (€1, €2, ..., ¢5)" , b= (b1,ba, ..., by).

An embedded ¢ (p) pair of RK method is based on the RK method (c, A, b) of
order g and another RK method (c, A, b*) of order p < ¢. An embedded pair is
characterized by Butcher tableau

<

e

Embedded pairs of explicit RK methods are widely used in variable stepsize algorithms
because they provide a cheap error estimation. From embedded methods we obtain an
estimate

ESTu11 = yn+1 — y;1k+1 [

of the local trucation error of the p th-order method at the integration point x,+1 =
Xp + hy. For the numerical integration of the Schrodinger equation (1) we use the
stepsize control precedure proposed by Raptis and Cash [59]:

— if ESTypy < L8 hpyy = 20y,

— if {5 < ESTy1 < Tol, hysy = hy,

- i EST, 41 >Tol, hpy1 = %" and repeat the step.

Where T ol is the requested local error. It should be noted that the ¢ th-order approxi-
mation yj, is used as the initial value for the (n + 1)th step, that is to say, the embedded
pair is applied in local extrapolation mode or higher order mode.

2.2 Trigonometrically fitted Runge—Kutta methods

We define the operators L (x) as follows:
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i—1
Yix) =y(x)+h D, a,-ij’.(x), i=1,2,...,s,
L(x) =yx+h) —yx) = > b)Y/ (x),
i=1

Definition 1 (see [2]) The method has exponential order p if the associated operator
L(x) vanishes for any linear combination of the functions

exp(wpx), exp(w1x), ..., exp(wpx),

where w; are real or complex numbers.

Remark 1 (see [S1)) f w; = wfori = 1,2,...,n,n < p, then the operator L(x)
vanishes for any linear combination of

exp(wx), x exp(wx), x? exp(wx), ..., x" exp(wx), exp(wy+1x), ..., exp(wpx).

Condition for the RK methods is given in the following theorem.

Theorem 1 Method (2)is of exponential order p if the following conditions is satisfied.:

cos(v) +i sin(v) = 1 + Z(iv)kbAk_le, 4)
k=1

where v = wih fori =0,1,..., p.

Remark 2 If wy = o, = o, for g,r € 0,1,..., p then the following additional
condition is required:

s
— sin(v) +i cos(v) = D ik(iv)*'bA e, )
k=1
On the basis of the above result we develop a new embedded 5(4) pair of explicit
Runge—Kutta methods based on the embedded 5(4) pair of Runge—kutta formulas [52].

3 Construction of the new embedded 5(4) pair of explicit Runge-Kutta methods

We shall consider an embedded 5(4) pair of Explicit Runge—Kutta formulas which
proposed by Dormand and Prince [52], it can be denoted by the Butcher tableau:
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9
clA L
b= 3|2 5 s s ©)
b* T R B s

R
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o

We shall construct the new embedded 5(4) pair with second exponential order.

3.1 Trigonometrically fitted higher order method with second exponential order

Consider the higher order Runge—kutta method, for second exponential order we requre
Egs. (4) and (5) to be satisfied, thus the following conditions should hold:

cos(v) — 1 = —v2bAe + vibA3e — vObAde,

sin(v) = v(be — vZbhA2e 4+ vibA%e),

and
—sin(v) = —2vbAe + 4v3bA3e — 6V bAde,
cos(v) = be — 3v2bA%e + SutbA’e.

Then the method integrates exactly the functions

{1, x, cos(wx), sin(wx), x cos(wx), x sin(wx)}.

We set by = %, by = 0 the coefficients b3, by, bs, bg of this method are:

by = (50 (1185031)10 + 416241008 — 588356000° + 41085600v* + 157248000002
—450 (6237118 —99900v° — 23180v* + 2194800v> — 744000) v sin(v)
+18 (18711v‘° — 77112008 + 32901000v° + 13290800v*

7896000002 + 54000000) cos(v) — 972000000)) / (2079v4zv) :
by = 125(—6183v% + 1589000° + 3286200v* — 59508000v>

+18(v%((9v* — 415)(9v? + 340)v> + 1924500) — 1200000)v sin(v)

+14427v% 4 27000° — 76550v* 4 3945000% — 337500) cos(v)

+48600000)/ (27v*N),
bs = 675(513v% + 29088v°® — 653200v* + 830400002
—240(81v° — 1755v* + 19850v% — 14000)v sin(v)
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+36(81v® — 3168v° + 452000* — 22400002 + 200000) cos(v)
—7200000)/(22Nv*),

be = 250(—1206v° + 1115000* — 478800v% + 3(243v° — 16200v* + 80700v>
—104000)v sin(v) + 24(324v% — 5175v* 4+ 217000 — 22500) cos(v)
+540000)/ (7N v*),

where N = 72908 — 162000% + 404100v* — 11200002 — 600000.
For small values of v the above formulae are subject to heavy cancelations and in
that case the following series expansions must be used:

b — 1000 502 N 134230 122140° N 570686189v" N
PT2079 462 T 582120 3274425 ' 34577928000 ’
125 50 491v*  52030°  1959610°
by=—5— 4+ — — + - +o
216~ 48 3024 77760 1603800
po 8L 97 1809v  132443,° N 275386310v° N
>7 88 88 12320 1848000 ' 243936000 ’

5 N v2 59v4+56683v6 146864611v8+
T 56 0 112 7840 ' 6350400 20956320000

We shall refer to this method as RKS4NEWH. We note that when v — 0, this method
reduces to the classical Runge—Kutta method of fifth algebraic order.

3.2 Trigonometrically fitted lower order method with second exponential order

Consider the lower order Runge—kutta method, for second exponential order we requre
Egs. (4) and (5) to be satisfied, thus the following conditions should hold:

cos(v) — 1 = —v2b*Ae + v*b*Ade — vOb* Ade,
sin(v) = v(b*e — v2b*A%e + v*b* A%e),

and

—sin(v) = —2vb*Ae + 4v3b* A3e — 6V b* Ade,
cos(v) = b*e — 3v2b* A2e + 5vb* Ale.

Then the method integrates exactly the functions

{1, x, cos(wx), sin(wx), x cos(wx), x sin(wx)}.
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We set by = %, b3 = 0, the coefficients b3, b}, b3, bg of this method are:

b} = (20(193347v'" + 12640950v® — 147372800v°+92814000v* 393120000002
—1125(6237v® — 999000° — 23180v* + 2194800v> — 744000)v sin(v)
+45(18711v'% — 77112008 + 32901000° + 13290800v* — 78960000v>
+54000000) cos(v) — 2430000000))/(2079v* N),

b} = 250(—3537v® + 659200° 4 1692600v* — 2975400002
+9(v2((9v? — 415)(9v? + 340)v? + 1924500) — 1200000)v sin(v)
+72(2708 + 27000° — 76550v* + 39450002 — 337500) cos(v)

£24300000)/ (24U4N) ,

b% = 135(837v® + 84600v° — 1666000v* 4 207600002
—600(81v° — 1755v* + 19850v% — 14000)v sin(v) — 18000000
+90(81v® — 3168v° + 45200v* — 22400002 + 200000) cos(v))/ (11v4N) ,

b = 250 (—40 (45v6 — 2804v* + 1197002 — 13500)
+3v (243v6 — 16200v* + 80700v% — 104000) sin(v)

124(3240° — 51750* 4 2170002 — 22500) cos(v))/ (7v4N) :

where N = 729v% — 162000° + 404100v* — 112000v% — 600000.
For small values of v the above formulae are subject to heavy cancelations and in
that case the following series expansions must be used:

pr_ 190 6220 N 4793357v* 122454753700 N 32277838675363v" L
37207 17325 48510000 32744250000  432224100000000 ’

pr_ 145 N 410 7414490° N 838239491°  752693376863v° L
4 108~ 90 1008000 194400000 1283040000000

351  648v%  10463367v* 10113974410  8396527930067v®

220 1375 T 15400000 2310000000 | 15246000000000

1 N 271v%  7400567v* N 3585211223v°  19992488922001v8 N
6720 " 5250 176400000 ' 79380000000  523908000000000 '

bl

We shall refer to this method as RKS4NEWL, and the new 5(4) pair as RKS4NEW.
We note that when v — 0, this method reduces to the classical Runge—Kutta method
of fourth algebraic order and the new pair RK54NEW reduces to the corresponding
classical 5(4) pair.
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3.3 Algebraic order of the new methods

The classical Butcher theory is described by Hairer et al. [53]. It is interesting to check
the algebraic order conditions for the new methods. We expand the conditions using
Taylor series over v and around zero:

First algebraic order:

221 N 3079v" N

© 504000 15120000
vt 110900 763831108
15000 984375 12600000000

be —

’

b*e —

Second algebraic order:

e L _ vt N 1106 32118 N
“7 27 77200 T 63000 30240000 ’
o | 31t N 486531° 2223295108 N
cC— — = — — e
2 45000 © 63000000 37800000000
Third algebraic order:
, 1 19t 468100 497792308
be” — ~ = + + +--
3 14000 ~ 5670000 7484400000
e | 19v* N 468108 N 497792308 N
cC— — = LI
6 28000 11340000 = 14968800000
Lo 1 11v?  32363v*  69057299v%  100061121203v®
b*c” — — = + + + +--
3 3750 7875000 = 28350000000  46777500000000
y 1 11v? 32363v* 690572990  100061121203v®
b*Ac — — = + + + + -
6 7500 ~ 15750000 = 56700000000 ~ 93555000000000

Fourth algebraic order:

I w2 4200 3861100 247069010°

4= 1200 T 280000 T 18900000 T 49896000000
1 v? 429y* 38611v° 2470690108
b(c*x (Ac)) — =

8 2400 + 560000 + 37800000 * 99792000000 L

’

’

, 1 v? 143v* 3861105 2470690108
bAc® — — = + + + +--
12 73600 280000 = 56700000 149688000000
oAl L v? 109v* 12010 1496493708
C— — = ’

24 = 73600 " 336000 5670000 | 59875200000 ©
R 3537 +_220363v4 +_357420517v6

© 74737500 " 70000000 " 47250000000
2002876316178

+623700000000000 T
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. 1 35302 220363v* 35742051708
b*(c x (Ac)) — = = + +
8 ~ 75000 140000000 ~ 94500000000
200287631617v% N
1247400000000000 ’

1 35302 220363v* | 3574205170°

b*At — — = + +
12 7 112500 © 210000000 ' 141750000000
200287631617v8
1871100000000000
piaZe_ L _ _31? N 63829v* 666676030
24 22500 ' 42000000 56700000000
236625893843v8

187110000000000 + "

Fifth algebraic order:

. 17 5231v* 72518908 16731883308
bc* — - = + + - 4+
5736000 8400000 = 212625000 408240000000
5 1 T7? 52310*  725189° 16731883308
b(c” x (Ac)) — — = + + — 4o
10~ 72000 16800000 = 425250000 816480000000
77v? N 5231v* N 725189v% 16731883308 N
108000 ~ 25200000 637875000 1224720000000 ’
bc + (A20)) 1 2302 +_2561v4 50990° N 899797183v® N
C C —_—_— = — —_ DRI
30 108000 ~ 5040000 145800000 2694384000000
pacd Lo 1w 937 +_714047v6 554934517v" N
© 720 T 12000 ~ 8400000 ' 567000000 1496880000000
1 32 47v* 117757v® 45469894908
bA(c * (Ac) — — =

40 ~ 8000 1120000 T 226800000 2993760000000 |

)

b@*mﬁnml—
15

)

b

pa2? L v? 47v* N 1177570 45469894908 N
60 4000 1680000 ~ 340200000 4490640000000 ’
3 1 v? 89v* 403900 11247165108
bA’c — — = + + + +--
120~ 24000 = 420000 24300000 1122660000000
b(Ac)? 1 770 5231v* 72518%0° 16731883308
C —_——

20 ~ 144000 ' 33600000 | 850500000 1632960000000

Theorem 2 (see [54]) The necessary and sufficient conditions for an adapted RK
method to be of order p are given by

b(v)® (1) — % = 0WPHI=P@y  pr) =1,2, ..., p.

where T is a rooted tree of order p(t) and the function y (t) and ® (1) are defined as
in [53].

@ Springer



946 J Math Chem (2013) 51:937-953

By Theorem 2 we conclude that the methods of the new pair RK54NEW have algebraic
order five and four.

3.4 Error analysis

If we want to see the behavior of the error and which parameters it depends on, we
have to use the local truncation error (LTE). We refer to the way given by Van de
Vyver [55] and the approach given by Anastassi and Simos [56], we shall present the
asymptotic expressions of the local truncation error for methods:

PHRKS54H: the higher order method of phase fitted RK pair from Simos [49],

— MODPHRKS54H: the higher order method of phase fitted modified RK pair
obtained by Van de Vyver [48],

— MODRKS54H: the higher order method of modified RK pair presented by Van de

Vyver [57],

RKS54NEWH: the higher order method of the new pair.

Eq.(1) is equivalent with y” = (W(x) — E)y(x), a nature choice for @ during
calculations for resonance problemis w = v/ E — W, where W is the constant approxi-
mation of the effective potential w (x). We have found the following asymptotic expres-
sions for large |E|:

he ( E3y(x)
LTE(PHRKSAH) ~ —— ,
( )™ 3600 (E3y’(x))

37hS  ( —E3y(x)
LTE(MODPHRK54H) ~ ,
( )™ 512400 (—E3y/(x))

LTE(MODRK54H) ~
h® 371LE?y(x)(W — W(x))
124815600 (—E2(180675y(x)w’(x) —37111(W — W(x))y’(x))) '
LTE(RK54ANEWH) ~

i (E(—zvv/(x)y/(x) — YW = W) +5W' () )

7200 2E%y(x)W'(x)

It was explained in [58] (p.197) that the amplitude of the derivative y’ is bigger by
a factor D'/2. Comparing D with E we can know that D = W — E, so the amplitude
of the derivative y is bigger by a factor E!/? either. Finally, we conclude that the
global error produced by PHRK54H increases with E7/2, MODPHRKS54H increases
with E7/2, MODPHRK54H increases with E/2, and RK54NEWH increases with
E?, Thus RK54NEWH is the method to choose for large energies and this will be
confirmed by the numerical illustrations in the next section.
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4 Numerical results
4.1 Comparison with fixed stepsize

In this section we consider the numerical integration of the Schrodinger equation(1)
in the case of [ = 0 and Woods-Saxon potential:

U uiq X — X0
W(x) = + . q=exp( )s
l+q9g  (1+44¢) a
with
uop
ug = —50, a=0.6, xo =7 and u; =——.
a

The domain of numerical integration is [0, 15]. For the test potential we shall consider
the resonance problem which consists of finding those energies (E > 0), at which the
phase-shift is equal to 7. The boundary conditions for this eigenvalue problem are

y(@0) =0 and y(x) = cos(VEx) for large x.
The choice of w is given by

V30+E, xel0,6.5],
VE, xel65,15].

w =

The numerical results obtained by the methods are compared with the analytical solu-
tion of the Woods-Saxon potential, rounded to six decimal places. We consider four
resonances:53.588872, 163.215341, 341.495874, 989.701916. Figures 1, 2, 3 and 4
show the errors —log;( | Eanalytical — Ecalculated | as a function of — log, ().

4.2 Comparison with variable stepsize

The variable stepsize embedded RK pairs used in the comparisions have been denoted
by:

PHRKS54: the phase fitted RK pair from Simos [49],

— MODPHRKS54: the phase fitted modified RK pair obtained by Van de Vyver [48],
MODRKS54: the modified RK pair presented by Van de Vyver [57],

RKS54NEW: the new pair presented this paper.

We consider the calculation of the phase-shifts with the Lennard-Jones potential
[57] which is given by

Vix) = 500(% - %)

@ Springer
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WOODS-SAXON POTENTIAL WITH E = 53.588872
9 ‘ ‘
—6— RK54NEWH
8 | | —5— MODPHRK54H
—<— PHRK54H

—*— MODRK54H

-LOG10(ERR)

n n n

3 3.5 4 4.5 5 5.5 6
~LOG2(H)

Fig. 1 Efficiency for the Schrodinger equation using E = 53.588872

WOODS-SAXON POTENTIAL WITH E = 163.215341
7 T T T T

—6— RK54NEWH
——&— MODPHRK54H
—<— PHRK54H
—*— MODRK54H

_LOG10(ERR)

3 3.5 4 4.5 5 55 6
-LOG2(H)

Fig. 2 Efficiency for the Schrodinger equation using £ = 163.215341

Based on the work of Raptis and Cash [59], we start the integration from xo = 0.7
with an initial stepsize & = 0.01, for the initial condition of derivative we choose
y'(x0) = 107, and take Tol = 1073 for the computation of the phase-shifts correct
to four decimal places, we use the stepsize control procedure proposed by Raptis and
Cash [59].

We consider the energies k2 = 25 and k> = 100 and choose the w = k. For the
calculation of phase-shifts, Figs. 5 and 6 show the number of function evaluations as
a functionof / =0, ..., 10.
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WOODS-SAXON POTENTIAL WITH E = 341.495874

—6— RK54NEWH
—&— MODPHRK54H
—<— PHRK54H
—+#— MODRK54H

_LOG10(ERR)

0 L L
4 4.5 5 5.5 6

-LOG2(H)

Fig. 3 Efficiency for the Schrodinger equation using E = 341.495874

WOODS-SAXON POTENTIAL WITH E = 989.701916
6 T T

—6— RK54NEWH
——&— MODPHRK54H
—<— PHRK54H
—*%— MODRK54H

o
T

_LOG10(ERR)

! !

5 55 6 6.5 7
-LOG2(H)

Fig. 4 Efficiency for the Schrodinger equation using £ = 989.701916

5 Conclusions

Based on the approach introduced by Kalogiratou and Simos [50], we develop a new
modified embedded 5(4) pair of explicit Runge—Kutta methods and give the asymptotic
expression of the local errors for large energies, this can explain the numerical result
in case of resonance problem. We apply the higher order method to the resonance
problem and apply the new embedded pair to elastic scattering phase-shift problem.
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CALCULATION OF THE PHASE-SHIFTS FORK =5
2000 T T

1800 T T s aNEW |

—6&— MODPHRK54

1600 | PHRKG4 /|
4 MODRK54 :

1400

1200

FUNCTION EVALUATIONS

1000

800 . . . .
0

INTEGER L OF THE CENTRIFUGAL POTENTIAL

Fig. 5 The number of function evaluations used by the considered codes as a function of 1 from the
centrifugal potential for energies k=25

CALCULATION OF THE PHASE-SHIFTS FORK = 10
2800 T T T T

I
2600 W
—%— RK54NEW

2400 | | —©— MODPHRK54 1
—+— PHRK54
2200 | | —<— MODRK54 4

2000 - 1

1800

1600

1400

FUNCTION EVALUATIONS

1200

800 . . . .
0 2 4 6 8 10

INTEGER L OF THE CENTRIFUGAL POTENTIAL

Fig. 6 The number of function evaluations used by the considered codes as a function of 1 from the
centrifugal potential for energies k2 =100

The applications show the efficiency of our new developed embedded pair and the
higher order method.

It is noted that in practical computations our new methods can be applied only
when a good estimate of the dominant frequency of the solution is known in
advance. For the techniques of estimating principal frequency we refer to the papers
[60,61].
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